


Small Gomputer System Supports
Large-Scale Multi-User APL
Powertul, interactive APL is now available for the multi-
lingual HP 3000 Series ll Computer Sysfem. A special
terminal displays the APL character set.

by Kenneth A. Van Bree

A PL (A PROGRAMMING LANGUAGE) is  an
L I interactive language that allows access to the full
power of a large computer while maintaining a user
interface as friendly as a desktop calculator. APL
is based on a notation developed by Dr. Kenneth
Iversonl of IBM Corporation over a decade ago, and
has been growing in popularity in both the business
and scientific community. The popularity of APL
stems from its powerful primitive operations and
data structures, coupled with its ease of programming
and debugging.

Most versions of APL to date have been on large and
therefore expensive computers. Because of the ex-
pense involved in owning a computer large enough to
run APL, most of the use of APL outside of IBM has
been through commercial timesharing companies.
The introduction of APL \3000 marks the first time a
large-machine APL has been available on a small
computer. APL \3000 is a combination of software for
the HP 3000 Series II Computer System2 and a CRT
terminal, the HP 264LA, that displays the special
symbols used in APL. The terminal is described in the
article beginning on page 25.

Although the HP 3000 is normally considered a
small computer, APL\3000 is not a small version of
the APL language (see page14). As a matter of fact,
APL\3000 has many features that have never been
available before, even on the large computers. For
example, although APL\3000 looks to the user just
l ike an interpreter, it is actually a dynomic compiler.
Code is compiled for each statement as it is encoun-
tered; on subsequent executions of the statement, if
the compiled code is valid, it is re-executed. By
eliminating the interpretive overhead, a speedup on
the order of a factor of ten can be obtained in some
cases, although the speedup is dependent on the
amount of computation involved in the statement.

The basic data type of APL is an array, which is an
ordered collection of numbers or characters. Sub-
script colculus, as defined by Phil ip Abrams,3 is a
method of selecting portions of an array by man-
ipulating the descriptors that tell how the array is
stored. The use of subscript calculus in the dvnamic
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compiler allows computation to be avoided in many
cases, and eliminates the need for many temporary
variables to store intermediate results.

One problem that has always plagued APL users is
the limited size of most APL workspaces. A work-
space in APL is a named data area that contains all the
data variables and functions that relate to a particular
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problem or application. Most other APL systems limit
a workspace to 100,000 bytes or less. APL\3000
eliminates this limitation by giving each user a vir-
tuol workspoce. A workspace is limited only by the
amount of on-line disc storage available.

APL\3000 is the f i rst  APL system to include
APLGOL4 as an integral part, APLGOL is a block-
shuctured language that uses keywords to control the
program flow between APL statements. To facilitate the
editing of APLC,OL programs, and to provide an en-
hanced style of editing for APL programs and user data,
a new editor was added to the APL system. This editor
can be used on both programs and character data, and
includes many features never available before in APL.

One of the features of APL that makes program de-
velopment easier is that program debugging can be
done interactively. When an error is encountered in an
APL program, an error message is displayed along with
a pointer to the place where the error was detected.
Execution is suspended at this point, and control is
returned to the user. In other versions of APL, the user is
allowed to reference or change only the variables that
are accessible within the function in which the error
occurred, and must resume execution within that func-
tion. APL\3000 has implemented a set of extended
control functions that allow the user to access or change

Fig. 1. Average response llrnes
for a range of activities on an HP
3000 Serles // Systern used only
for APL and similar data for a
range of APL activities on a multi-
lingual HP 3000 Serles // Sysfem.
A system with 512K bytes of main
memory will support up to 16 APL
terminals.

any variable in the workspace and resume execution
within any function that has not yet completed execu-
tion. These extended control functions can be used to
implement advanced programming techniques that
were previously difficult or impossible to implement in
APL. An example is backtracking, which involves sav-
ing the control state at various points in the computai
tion and returning to a previously saved control state
when an error is detected.

The new features of APL \3OOO are described in detail
in the articles that follow.

Performance Data
An HP 3000 Series II System with 512K bytes of main

memory will support a maximum of 16 terminals using
APL, ora combination of terminals using APL and other
languages. Fig. 1 shows typical response times for vari-
ous combinations of terminal types, APL program
loads, and memory sizes. ,
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Introduction to APL

APL (an abbreviat ion for A Programming Language) is a
concise high-level language noted for i ts r ich variety of bui l t- in
(primit ive) functions and operators, each represented by a
symbol, and i ts exceptional faci l i ty for manipulat ing arrays.

APL uses powerful symbols in shorthand fashion to define
complete functions in very few statements or characters. For
example, the sums of each of the rows in a very large table
cal led T are + /f  .  The sums of the columns are +,2[t]T. Tne
grand total of al l  numbers in the table is simply +,/,T. Sort ing
and adding tables and other common operations are just as
srmple .

These characterist ics, combined with minimal data oectara-
t ion or other language requirements, help substantial ly reduce
programming effort.  Typical interactive APL programs take only
10-30% as long to write as would equivalent programs in other
languages, such as FORTRAN or BASIC.

APL was invented by Dr. Kenneth E. lverson at Harvard Uni-
versity In .1962 a descript ion of his mathematical notat ion was
pub l ished.8y  1966,  IBM had re f ined the  no ta t ion  in to  a  lan-
guage and implemented the f irst version of APL on an experi-
mental t imesharing system. By 1969 APL was an IBM program
product and several independent t imesharing services began
providing i t .

Because APL is both easy to use and tremendously powerf ul
i t  has gained widespread acceptance. A large, swift ly growing
APL t imesharing industry has developed Approximately TOok ot
IBM's internal t imesharing is done in APL. Over 50 North Ameri-
can universit ies including Yale, MlT, UCLA, Syracuse, Univer-
sity of Massachusetts (Amherst),  York, and Wharton have in-
house systems. Populari ty has grown in Europe, especial ly
Scandanavia and France.

Although init ial ly designed for scienti f ic environments, APL's
features proved to be ideal for processing business data in
tabular formats. Now, most t imesharing services f ind approxi-
mately B0% of their APL business is in the commercial appl ica-
t ions area.

APL Characteristics
A symbol ic  language wi th a large number of  powerfu l  pr imi t ive func-
t ions.

Uses right to left hierarchy (as opposed to precedence) that can be
overridden by parentheses.

Designed to deal  wi th arrays of  numbers as easi ly  as other languages
deal  wi th indiv idual  i tems.

Minimum language constra ints:  very few syntax ru les;  uni form rules
for all data types and representations; automatic management of
data storage and representation.

APL Advantages
Programs can be developed in 10-30% of the time and code space
required by languages l ike FORTRAN, ALGOL, and BASIC.
Concepts of a program can often be more quickly grasped because
of the brevi ty and conciseness of  APL code.

Very f lex ib le:  programs easy to change; data very accessib le and
easy to rearrange.

Fig. 1. Characterlsllcs and advantages of APL



BASIC
10 DrM 4(100)
20 READ N
30 S:0
40 FOR I:1 TO N
50 READ A(l)
60 S=S+A(l )
TONEXT I
80 PRINT S
90 END

FORTRAN
DTMENSTON A (100)
READ (5,10) N

10 FORMAT (13)
READ (s,20) (A(r),  r=1, N)

20 FORMAT (8E10.3)
s:0.0
DO 30 l=1 ,  N

30 S=S+A(l)
wRrTE (6,40)S

40 FORMAT (E12.3)
END

ALGOL
REAL S;
INTEGER I ,  N;
GET N;
BEGIN

REAL ARRAY A (1:N);
S:=0.0;
FOR l : :1 TO N DO

BEGIN
GEr A(r);
S:=S+A( l ) ;

END;
PUT S;

END;

APL
+ /,A-D

Flg.2. Comparlson of sleps required to read and sum a list of numbers.

R = Bevenues by product and salesman

Johnver Vanston Danbree

1 926

. 253
852
609

Danbree

890

1 290
89

Vansey

1 4
1491

co

120

Vansey

54
802

1 2
129

Mundyke

143
t o z

ocv

87

Mundyke

430
235
145

/ b

Cotfee
Water
Mitk

190
325
682
829

140
1 9
1 4

140
Glven:

E : Expenses by product and salesman

Tea
Coffee
Water
Mitk

Johnver

120
300

67

Vanston

b5

1 0
299
zcl

Flnd:

Find each salesman's tolal commission where the formula for
commission is 6.20l" of profit, no commission for any product
to total less than zero.

Angwar:
I

\ Commission
Johnver Vanston

9 2 5
Danbree Vansey Mundyke

113  45  32

Explanatlon of APL Code Requlred:
. 0 6 2 x + l  O [  R - €

Step 1 . Subtract each item in matrix Efrom each item in matrix R
Step 2. Find maximum of each item in resultant matrix versus the value of zero
Step 3. Sum over new resultant matrix by fows
Step 4. Multiply individual items in resultant vector by .062
Step 5. Automatically print new resultant vector

Comparllon of APL Code Requlred Wth BASTC Codo Roqulrod:
APL

0 6 2 x  + l  o [  R - E

BASlC

10 FILES DATA
20 DTMENSTON R(4,5), E(4,5), T(s)
30 MAT READ #1; R,E
4 0 M A T T = Z E R
5 0 F O R P = 1 T O 4
6 0 F O R S = 1 T O 5
70 r(s) = r(S) + .062 "(R(P,s)-E(P,S)) MAX 0
80 NEXT S
90 NEXT P

.IOO MAT PRINT T
1  1O  END

Fig.3. Explanation of APL code using typical example



APL Data: Virtual Workspaces and
Shared Storage
by Grant J. Munsey

UCH OF THE POPULARITY of APL can be
attributed to the convenient wav it handles

data. Most other programming languages treat vari-
ables as volatile "scratchpad" areas that are occupied
by meaningful data only while programs are execut-
ing. Before programs can run, they must load the
variables with data, usually by reading a file. During
program execution the data is accessed by referring
to variable names. When execution is completed,
the meanings of the variables are lost unless the pro-
grams explicitly save their data in another file. APL,
on the other hand, provides direct access to named
data items, large or small, without forcing the con-
cept of a file on the programmer. Once values are
assigned to APL variables, they are accessible by
name either in program execution mode or in calcula-
tor mode. The relationship between the data and the
name is preserved until the programmer chooses to
purge the data. The variables and the functions that
operate upon them are preserved together, which
means that APL applications need not go to files to
access and save data.

In APL a unique name is attached to each distinct
set of data by means of the assignment arrow:

DATEeZ 4 7776

OCCASION-'INDEPENDENCE DAY.
APL\3000 variables may be either scalar (single-

elementJ or array-shaped with up to 63 dimensions.
Though conceptually there are only two data types in
APL, character and numeric, APL\3000 actually
stores its data in a variety of ways for efficiency. APL
differs from most other programming languages in
that an APL programmer is never involved in specify-
ing or choosing these machine-dependent internal
representat ions;  the APL system automat ica l ly
chooses both the most efficient and the most accurate
representation for any given set of data.

Likewise, an APL programmer never writes decla-
rations specifying the shape, size, or amount of stor-
age that will be required for a variable. Variables are
declared by assigning data to them, and the APL sys-
tem allocates the appropriate storage in which to re-
tain the data. Readers familiar with languages requir-
ing declaration of variables (e.g., FORTRAN, BASIC,
COBOL) wil l recognize that the task of setting up such
declarations can often take a substantial amount of
programming time.

An interesting and useful feature of APL is that a

particular variable name may, at different points in
time, refer to different types and shapes of data, as the
following sequence illustrates:

4e3 .5

4 e 2 4 6 8

A-'\,4trHAT WOULD WE APPRECIATE?'

A + 2 3 p 7 2 3 4 5 6

A

1 2 3

4 5 6

In this example, a is first assigned the numeric scalar
s.s. Then R is assigned the numeric vector 2 4 6 L
Next, a is assigned the character vector 'WHAT wouI-D
WE APPRECIATn?'. Finally, a is assigned a two-row,
three-column array of numbers, then printed. Notice
that each statement whose result is not explicitly as-
signed causes the result to be automatically printed.

The Workspace Concept
As functions and data are created, they remain as-

sociated with their user-assigned names in an area
called the active workspace. This area can be named
and saved for later use by entering the system com-
mand:

)SAVE WSID
where wsID is a user-specified workspace name. This
saves a "snapshot" of all currently defined functions
and data items. A saved workspace may be later re-
activated by entering the system command:

)LOADWSTD
The concept of workspaces provides a convenient

means for working on several different problems,
each of which has its own set of pertinent data. For
example, an accountant might have several custom-
ers for whom he is keeping payrolls. Several work-
spaces might be maintained, each containing payroll
information for a particular client. Whenever a salary
report is needed for a client, the appropriate work-
space could simply be loaded and the report gener-
ated. Notice that workspaces are much like folders in
a filing system; each holds the information required
for a specific job.

Since all functions and data for a problem are stored
in a single workspace, workspaces tend to grow very
large as problem size increases. Yet most existing
APL implementations have limited the size of work-
spaces, typically to less than 100,000 bytes. This con-
straint either imposes an artificial limit on the size of



applications attempted, or forces the more deter-
mined programmer to seek additional storage outside
of the workspace by explicit use of a file system, a
definite violation of the general spirit of APL pro-
gramming.

The HP 3000 is a small computer with a limited
amount of main storage. Yet APL \3000 has avoided
the traditional workspace size restrictions by employ-
ing two strategies: shared data storage and virtual
workspaces.

Shared Data Storage
Shared data storage helps solve the workspace size

problem by conserving storage. Multiple copies of the
same data are avoided in many cases by allowing
arbitrary numbers of variables to share the same data
area. Consider the following two statements:

A + 7  2  5  6 I  1 0

B e A

The first statement creates a data area for a. while the
second specifies that B is to be assigned whatever is in
a. While one could naively make a second copy of the
data and attach it to B, this is completely unnecessary
and is a waste of storage; s should be able to share the
original data with a.

A potential problem is: if a and B share the same
data area, what happens if either of the variables
changes part of its values? Does this affect the other
variable? For instance, the subscripted assignment

B  [a ] -2s
should not have the effect of also making a[a]'s value
20.

Copy-on-Write
APL\3000 solves this problem by attaching a re-

ference count to every data area, and keeping track of
how many variables are referring to it. Partial changes
to a data area (e.g., B[a]-2s) are allowed only if i ts
reference count is 1 (i.e., it is unshared). A data area
whose reference count is greater than 1 is never
changed, since more than one variable is referring to
it. Instead, a "copy-on-write" policy is adopted: the
variable to be written into is given its own private
copy of the data, the reference count of the original
shared data area is decreased by 1, and the original
data remains unchanged.

Shared data storage is useful in that it frequently
allows the APL system to avoid making multiple
copies of identical data. But this is really only a wel-
comed side effect of the real purpose of shared stor-
age: allowing the dynamic compiler to implement
certain selection functions and operators by applying
Abrams'subscr ipt  co lculus.2 This technique is  used
to improve the performance of APL \gOOO, providing
a two-fold justif ication of shared storage: space and
sneed.

Subscript calculus places another requirement on
the APL system besides shared data areas: a variable's
data area must be decoupled from its accessing in-
formation. That is, the data area itself must not de-
scribe the method of storing the data therein. To un-
derstand why this is required to perform subscript
calculus, the attributes of APL data must be recalled:
it has some actual collection of values, and it has a
particular size and shape. Consider a numeric vari-
able asc whose data is arranged in two rows and three
columns:

ABC
L 2 4

0 5 9

The storage for ABC contains six data elements that the
user thinks of as a two-dimensional array. At the
machine level, however, storage is actually accessed
in a l inear fashion, as if i t were a vector. To access any
given element of AeC, the APL system takes a set of
user indexes, consisting of a number for each dimen-
sion in Rsc, and calculates a l inear address into the
data area holding ABC's values.

It has been common practice to store data in what is
called row major order. In this scheme, data is stored
with the rightmost subscript varying the fastest. For
example, the actual linear layout of the variable anc
stored in this order would be:

7 2 4 0 5 9

anc[o;o]  anc[o; r ]  ABC[0;2]  anc[r ;o]  aocIr ; r ]  ancIr ;z ]
Notice that zero-origin indexing was used (the first

element in any dimension is index O).Zero origin wil l
be used in all formulas and examples hereafter.

When data is stored in row major order, one can
map a set of user indexes into a machine address by
employing the formula:1

RANK_1 RANK 1

ADDRESS: > rul r I SHAPE [K] t1)
l  =  o  K : l + 1

where I is the set of user indexes. In addition to the
user indexes, this formula requires some information
about the data's exact size and shape: RANK is the
number of dimensions in the array, and suapn is a
vector of the sizes of each of the dimensions. Together
RANK and sHAPE make up the variable's row major
access information.

Applying equation 1 to calculate the actual address
of the element AnC [o;z]:

|  : O 2
R A N K  : 2
SHAPE i 2 3

ADDRESS : (r[o] x sHApE [r]t + U[r] x rl
: ( 0 x 3 ) + ( 2 x 1 )
- 1

Referring back to the description of how asc is
stored, it can be seen that aoc [o;z] is indeed at loca-
tion 2. Thus for data stored in row major order, all that



is needed to calculate the actual storage address of an
array element from a set of user indexes is the nANK
and sHRpn of the data.

In APL systems not concerned with performing

subscript calculus, this accessing information is tra-
ditionally stored with the data itself, which makes
every data area self-describing. Subscript calculus, on
the other hand, wants to view data in many different
ways without physically rearranging it. The opera-
tion of subscriptinC (e.C., ABC [1;1]), and the functions
TAKE, DRop, REVERSAL, TRANSposE, and RnsHRpE can be
implemented so that they rearrange data without ac-
tually moving or copying it, but only if the data area's
accessing information is not an integral part of the
data. Consider, for example, the APL function that
reverses the columns of an arrav.

ABC
L 2 4

0 5 9
p6s6-{anC

RABC
4 2 7

9 5 0

If the result of the reversal must always be stored in
row major order, then nothing can be done except to
make a second copy of aec's data for RABC, with its
order tearranged. But if one can depart from row
major storage order in this case, one can generate new

access information for RABC, and it can share ABC's

data area with no data movement required. This re-
quires generalizing the storage mapping function de-

veloped above to allow other storage arrangements
than row major. The new formula wil l be:

ADDRESS :  oFFSET *  
*^ ;  

r  Ul 'DEL Ul  e)
l = o

This generalized formula makes explicit something
that equation 1 was able to imply by knowing that

data was stored in row major order: OFFSET is always
zero; and DEL U] is always

R A N K -  1

ll sHarn [r].
K = l +  1

The new formula requires that both of these be

made part of a variable's data accessing information.
Equation 2 can be checked by again calculating the
address of element ABC [o;z]:

I  : O 2

RANK i 2

SHAPE : 2 3

D E L  : 3 1

OFFSET : 0

ADDRESS:  OFFSET +  ( t [o ]  x  DEL [0 ] l  +  ( I [ r ]  x  ln l  [ t ] t
: o + ( o x 3 J + [ 2 x 1 )

This is the same address calculated by applying equa-

t ion 1, so equation 2 seems to work, at least on row

major data. This new formula can be used to share
ABC'S data with RABC:

1 . 2 4 0 5 9

anc[o;o]  nac[o; r ]  arc[o;z]  ancIr ;o]  nncIr : r ]  ancIr ;z ]
nnnc [o;z] nanc [o;r] nnac [o;o] nnnc [r;z] nnec [r;r] nanc It;o]
By changing both the onr- vector and the oFFSET as
shown below, RABC can be totally described by its

accessing information. As a check, equation 2 can be
used to calculate the storage address of element Ragc

forz ] :
|  : O 2

R A N K  : 2

SHAPE i 2 3

D E L  : 3 - 1

OFFSET : 2

ADDRESS :  OFFSET +  ( l fo l  x  DEL [0 ] )  +  t l [ r ]  x  DEL [1 ] )
: 2 + ( o x 3 )  + ( 2 x [ - 1 ) )
: 0

Referring back to the data area shared by anc and

RABC, i t  can be seen that RAnc [o;z] is indeed at address

0 of the shared data area.

Thus by including the oEt- vector and the oFFSET in

a variable's set of accessing information, data areas

can be shared among variables whose conceptual or-

derings dif fer. Notice, though, that each variable must

have i ts own private set of accessing information for

this to work, otherwise the shared data area can only

be interpreted as one shape and storage rnethod.

Using a set of transformations to the nel vector and

the otrpssr in the above manner to rearrange data

without actual ly moving i t  is the essence of subscript

calculus.

Virtual Workspaces
The ws FULL message is well-known to most APL

programmers. In specific terms, it means that the ac-
tive workspace has fi l led up and program execution
has stopped. In more general terms, it usually means
that the programmer is going to have to do a lot of
work to circumvent the problems of limited work-
space s ize.

APL\3000 uses a technique called virtual storage
to remove the workspace size l imit. This allows the
user to create and maintain workspaces containing
mill ions'of bytes of data. In fact, workspaces are l im-
ited in size only by the amount of disc storage avail-
able on the machine, the same limit that would apply
to data stored explicit ly as fi les.

Two layers of virtual workspace implementation
make this possible. The first layer creates, by means of
microcode routines, a very large l inearly addressed
data space. The second layer maintains this address
space in many smaller variable-length segments.

To provide the large address space required to sup-
port virtual workspaces, APL \3000 uses a set of nine
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M.BiI
Page Address

Page
Number
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Word-in-Page Address
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2N-i

232 -1

Fig. 1. APL 3000 uses a virtual memory scheme to give each
user whatever size workspace is needed, instead of imposing
a fixed maximum workspace s2e as most APL systems do.
The virtual memory is partitioned into 2M pages of 2N words
each where N+M :32.

virtual memory instructions that have been added to
the HP 3000 Series II instruction set. These instruc-
tions are added by installing eight read-only memory
(ROM) integrated circuits in the CPU when APL\3000
is installed. The virtual memory instructions take a
small amount of main computer storage plus a large
disc file and create what looks like one large linearly
addressed memory. This is done using what is known
as a least recently used (LRU) virtual memory scheme.

The logical addresses used by APL\3000 arc 32-bit
quantities. The M most significant bits of the address
are considered the page oddtess and the N least sig-
nificant bits the word-in-poge address. Thus the vir-
tual memory is partitioned into 2M pages of 2N
words each (see Fig. 1). The values for N and M are
determined by APL \s000 to provide efficient use of
the computer hardware. N plus M must add up to 32,
so the virtual memory can contain up to 232 words
(4,294,967,296 words). This is the only theoretical
limit to workspace size.

The HP 3000 main computer store is set up to con-
tain a number of zN-word pages from the virtual mem-
ory along with a small status table for each main-
store-resident page. Each status table contains the
following information:
r The virtual memorv address of the first word in

the page

r A link that points to the next status table
r An indicator that tells whether data in the page

has been modified since the page was brought into
main storage from the disc

r The main storage address of the words in the page.
Fig. 2 shows how these status tables are arranged in

main store along with the data from the pages. The
status tables are arranged in a list with each status
table pointing to the next status table. This list is
always arranged so the status table for the most re-
cently used page is the first entry in the list.

Operation of the virtual memory instructions can
be illustrated by describing the execution of a vTRTUAL
LOAD instruction (see Fig. 3). This instruction re-
quires a 32-bit virtual address as its operand and
returns the word stored at that location in virtual
memory. To accomplish this the first task is to deter-
mine the page in which the word resides (the page
address). This is done by taking the M most signifi-
cant bits of the virtual memory address. The second
operation is to find where the required page resides.
This is done by first searching down the list of status
tables to see if the page is in main storage. If the page
is found in the list then the word requested is already
in main storage and all that need be done is to use the

Fig.2. At a given time, the main computer store contains a
number of 2N-word pages f rom the virtual memory along with a
sma// stalus table for each of these pages. The status fables
are arranged in a list with the table for the most recently
accessed page at the top of the list.
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Fig.3, lt the page that contains the word addressed ls not ln
main storage, fhe sysfem brings in the required page from the
disc, swapping it for the page whose sfatus table is at the
bottom of the list, that ls, the /easf recently used page.

word-in-page part of the virtual address to access it. If
the end of the status table list is reached without
encountering the required page then a software
routine is called from the virtual instruction mi-
crocode. This routine decides which of the current
main-store-resident pages can be overwritten with
the data from the new page, stores the current page on
the disc if it has been altered since being loaded, and
reads in the new page.

APL \3000 always chooses the least recently used
page as the one that can be removed. This is the page
whose status table is the last one in the status table
list, since the list is maintained with the most recently
used page first. This method is critical to the efficient
operation of virtual memory, because it causes the
pages that are used frequently by APL\3000 to re-
main in main storage where they can be rapidly ac-
cessed while the infrequently used pages migrate to
the disc.

Virtual Segmentation
For this large linearly addressable virtual memory

to be useful in creating virtual workspaces the ad-
dress space must be broken up into several Small
blocks of memory, each of which can be indepen-
dently expanded or contracted in size.In APL\3000
this is accomplished by three software routines. The

first routine allocates blocks of memory; it is given the
required number of words and it returns the starting
virtual address of the block allocated. The second
routine returns previously allocated blocks of mem-
ory to the free list where they are available for later
reallocation. The third routine can be instructed to
expand or contract the size of a currently allocated
block of memory.

The virtual storage allocation routines work with a
data structure called the free storage list (FSL). The
FSL contains an entry for each block of unused stor-
age in the virtual workspace. Each entry in the FSL
contains the following items:
r A 32-bit virtual memory address that is the begin-

ning of a free block of virtual memory
r The number of words in the free block of memory.

When a block of storage is returned to the FSL by
the software a description of the block is put into the
FSL so that no two FSL entries describe adjacent areas
of memory. In this way the free storage available in a
workspace is represented by the minimum number of
FSL entries.
Conclusion

APL is a convenient language because its work-
space concept allows the programmer to use variables
rather than files. APL \3000 has extended its useful-
ness by allowing workspaces to be extremely large'
Also, storage use and speed have been optimized by
means of shared data areas and subscript calculus'
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APLGOL: Structured Programming
Facilities for APL
by Ronald L. Johnston

InVER A PERIOD OF YEARS the computerscience
\-lcommunity has developed a set of programming
disciplines for systematic program design that have
become widely known as structured programming.
One very important component of this science is a set
of interstatement control structures for clearly ex-
pressing the flow of control. These control structures
are embodied in such block-structured languages as
ALGOL or PASCAL, and therefore these languages
have been widely used in teaching computer science
in colleges and universit ies. One control structure
that has received much crit icism as unstructured
and harmful is the coro of FORTRAN and other
languages.l '7'8 The use of the coro, it is argued, is
to be avoided because it can render program flow
unintell igible, unmaintainable, and impossible to
prove correct.

APL is a modern language with array-oriented
functions, but only a single branching construct is
avai lable: -+expression,  where "expression,"  how-
ever complex, evaluates to a statement number to
which control is transferred. This construct is the
rough equivalent of a computed coro which, as men-
tioned previously, is not considered a good struc-
tured programming tool. Many APL enthusiasts, in
defense of the language, have argued that its rich set
of array functions reduces the necessity of including
explicit loop constructs in an APL program, thereby
minimizing the importance of good control structures
in this particular language. Nevertheless, empirical
studies2 of APL programs have shown that the fre-
quency of branching per l ine is greater in APL than in
FORTRAN, although there are fewer branches per
equivalent function, Furthermore, as a consequence
of having only one branching construct the control
f low even within well structured APL programs can
often be obscure.

Many attempts have been made to improve the
readabil ity and understandabil ity of the APL branch
function. Saal and Weiss2 relate that APL program-
mers use various stylized forms of branching with
great frequency in an attempt to impart some regular-
ity to the branch construct. These constructs have
become much-used idioms of the language. Other
APL programmers,3'4'5 dissatisfied with even these

stylized branching constructs, have invented special
packages of APL functions that attempt to provide
more acceptable control structures like tr'-rnsx-eLsn,
WHILE-DO, CASE, and REPEAT-UNTIL. However, these
special functions have discouraged their own use be-
cause they occupied storage in workspaces that were
already too small, and because the function calls im-
posed a run-time speed penalty on the user. The only
acceptable solution lay in enhancing the language
itself, so that APL programmers could use the grow-
ing body of  s t ructured programming techniques
without incurring the penalties inherent in the solu-
tions to date.

Solut ion:  APLGOL
A P L \ 3 0 0 0  i n c l u d e s  a n  a l t e r n a t e  l a n g u a g e ,

APLGOL, which enhances standard APL inthe area of
branching. Based on the work of Kelley and Walters6,
APLGOL is a fully-supported language that adds
ALGOL-like control structures to APL to provide the
needed structured programming facil i t ies. Program-
mers writing in APLGOL can make use of such famil-
iar constructs as IF.THEN-ELSE, WHILE-DO, REPEAT-
UNTIL, and casn. Some constrained forms of struc-
tured branching are also included; they are LEAVE,
ITERATE, and RnstRnr. The resultant programs are
much easier to read, understand, and maintain than
the equivalent programs written in standard APL.
These qual i t ies are essent ia l  in  product ion pro-
grammin g envi ronments.

Another language facility, ASSERT, has been incor-
porated to encourage programmers to assert correct-
ness properties of algorithms as they write them,
hopefully to foster the proof-of-correctness approach
to programming that Dijkstra has recognized as so
important  to  the product ion of  error- f ree pro-
g rams .s ' e ' 10  Us ing  ASSERT s ta temen ts  t he  p ro -
grammer states properties and conditions that must
be true if the program being written is to work prop-
erly. For example, suppose a function uses the vari-
able n as a divisor and the programmer expects that
no element of a should ever be zero. The following
assertion might be included in the function ahead of
the division:

ASSERT 7 I  ^ /A *O i

1 1
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functions, which may call each other without restric-
tion. (However, any given function must be entirely
APL or entirely APLGOL.) APLGOL expressions are
exactly the same as APL expressions, following the
same set of syntax and semantic rules. A function
originally developed in APL can be easily modified to
become an APLGOL function, and vice versa. The
only differences between APL and APLGOL func-
tions l ie in the specific syntax of the function headers,
the control structures, the use of the lamp symbol (n)
as a comment terminator, and the fact that APLGOL,
like ALGOL, terminates statements with a semicolon.
Fig. 1 contrasts an APL function with its equivalent
APLGOL function, i l lustrating how nearly identical
the two functions are.

Canonical Forms
For run-time efficiency, it has been customary for

APL interpreters to translate functions from character
form into an internal form, whereupon the original
character source is discarded. Subsequent requests
for display of the functions are satisfied by translating
the internal form back to a canonical character form.
APL programmers have become accustomed to this
canonical form of their programs being slightly dif-
ferent from what they originally input, in that un-
necessary blanks have been compressed out, labels
"undented", and the formats of numeric constants
perhaps changed. The short function shown below
illustrates how the original and canonical forms may
differ for APL:

Original APL

lol R* PART PERCENT WHOLE

[1]  R e1E2 x PART+ WHOLE

Canonical APL

[0] R-PART PERCENT WHOLE

[1]  Rel00xPART+WHOLE
In similar fashion, APLGOL translates to internal
form and back-translates to a stylized canonical form.
However, APLGOL canonical form may be markedly
different from the original. APLGOL can be input
free-form with many statements per l ine, but the ca-
nonical form always has one statement per l ine, with
indenting for each layer of nesting. As Fig. 2 shows,
the canonical form of this function offers the advan-
tage of making the control structures more obvious by
indenting the tp'-rueN-ELSE statements.

One consequence of the APLGOL control structures
is that the keywords of these structures (IF, THEN, etc.)
are reserved and cannot be used as variable or func-
tion names in APLGOL functions. This is not usuallv
a severe l imitation to the programmer.

lmportant Design Considerations
APLGOL is  a fu l ly-supported language,  not  an

add-on to APL. The decision was made early in the

)prus' , !n, .nxr.  
'A 

PRINT )FNS Lls ' t

I r r l
[ 1 2  ]
I r 3 ]
I r r l

BEG]N

F N A M E * ( F N A N I E I ' ' ) / F N A N 1 D . . T ' N I - [ I N X i ] i  A  D E - t s L A N K  N A M E  F

! - ( z p ! H  t , ' r . - . -  
! . f N A M E , r  * r i r ' r

NLINES_1TpCR- lCR FNAMEI  A CENERATF]  CANON]CAL RET,A

l 1 5 l  ! - ' [ ' . ( ( ( l 1 0 r N r - r N E S ) . 0 ) i ( N L I N E S , 1 ) p 1 N L I N E s r , ] .  . c x ;

[ r o ]  I N X - I N X + 1 I

lttl FtN'-Di

[ 1 8 ]  E N D ]

l1e] END PROCEDTTRE

Fig. 1. An APL function and rts APLGOL counterpart. The tuvo
functions are nearly identical, butthe APLGOLfunction makes
use of ALGOL-like control structures that make it easier to
read, understand, and maintain.

In this fashion the programmer lets the correctness
proof and the program grow hand in hand. Each as-
SERT statement contains a relational expression that is
evaluated dynamically each time control reaches it. If
the assertion proves false, execution is halted to per-
mit the programmer to choose an appropriate course
of action. Assertion statements can be conditionally
executed, based on a level number in each assertion.
One useful way to employ assertions is to have all
assertions checked during init ial program writ ing
and debugging. Later, as the program reaches produc-
tion status, assertion checking is turned off. If at some
future date the program exhibits erroneous behavior,
checking of  asser t ions can be easi ly  re in i t ia ted,
greatly facil i tating debugging efforts. Using asser-
tions in this fashion, there is no run-time penalty
during production use of the programs; only during
debugging stages are the assertions checked.

A workspace may contain both APL and APLGOL

1 2



Original APLGOL

0l pRocEDURE A coNFoRMs B;rF (v/1:(x/pA),x/ps)runN

r] 
'coNnonvanlE - SCALAR/JNIT ExTENsIoN'ELSE tF (ppA)=ppB

2] THEN IF (pA) A,:pB THEr,J'coNponMRBLE - SAME sHaps' nLSs
e] 

'Nor 
coNFoRMABLE - LENGTH ERRoR'

4] ELSE 
'Nor 

coNFoRMAsLe - naNx rRRoR';
J l  Er \u  TKULEUUKL

Canonical APLGOL

I o] nnocrounn A coNFoRMs B;

I  t ]  I F  (  v , / 1 - ( \ / pA . , . r , zpB )  THEN

I z] 
'coNFoRMABLE - scALAR/uNrr EXTENSToN'

I s] ELSE

[ +] rF (ppA)=ppB rHEN

I u]  IF (pA)^. :pB rHEN

I o] 'coNronMasr,r 
sAME sHApE'

I z] ELSE

I e] 'Nor 
coNroRvasLn - Lrr,JGrH eRRon'

I s] ELSE

[to] 
'Nor 

coNFoRMAsLE - n,qNr EnnoR';

[11] END PROCEDURE

Fig. 2. User inputs in APLGOL are translated to an internal
form and backlranslate to a canonical form. The canonical
form makes the control structures more obvious by indenting.

design stages that it was to be as convenient to use as
APL and should require no extra steps for the pro-
grammer. It was to suffer no significant speed or space
penalties, but should offer itself as a viable alternative
to programming in APL.

One important design decision was to use the same
dynamic incremental compiler for both APL and
APLGOL (see article, page 17). Once a function has
been translated to internal form (S-code), its incre-
mental compilation and execution is handled by a
single mechanism that is common to both languages.
The most obvious payoff from this approach is that
only one such system needed to be implemented,
resulting in lower development costs than if two
separate compilers had been written. A second, less
obvious advantage is that this guarantees that there
are no insidious semantic differences in the way each
language evaluates its expressions. That is, an ex-
pression like + /" gives the same result (norraarN
ERROR in some systems, including ours; 0 in other
systems) in both languages. Finally, it guarantees that
the execution speed of both languages is the same,
except in functions dominated by branching over-
head. In these cases APLGOL tends to be slightly
faster, because it generates more efficient branching
code. APLGOL branches don't have to be range-
checked at run time as APL branches do, since all
APLGOL branches are generated and guaranteed in-
range by the character-to-internal translator when the
function is created.

These considerations continually influenced the
design of APL\3000, most often having the effect of

complicating internal code assignments, data struc-
tures, and support routines. The result, however, is a
system that honestly supports both APL and APLGOL
without noticable favorit ism of either.S

References
1. E.W. Dijkstra, "GOTO Statement Considered Harmful,"
Communications of the ACM, 11 (1968), pp. "147-748.
2. H.l.Saal and S. Weiss, "An Empirical Study of APL
Programs," IBM Israel Scientific Center, Technion City,
Haifa, Israel.
3. I.P. Dorocak, "APL Functions which Enhance APL
Branching," IBM Corp., Federal Systems Division, Oswego,
New York, APL 76 Proceedings (1926), pp. 99-105.
4. W.K. Giloi and R. Hoffman, "Adding a Modern Control
Structure to APL without Changing the Syntax," APL 76
Proceedings (1976),  pp.  189-194.
5. L.R. Harris, "A Logical Control Structure for APL," APL
Congress 1973, American Elsavier, New York, 1973, pp.
203-2 ' tO.
6. R.A. Kelley and f.R. Walters, "APLGOL-Z, A Structured
Programming System for APL," IBM Palo Alto Scientific
Center, Technical Report No. G320-331,8, i,573.
7. "The GOTO Controversy," SIGPLAN Notices (special
Issue on Control Structures in Programming Languages),
Yol .  z .  No.  11.  1922.
B. E.W. Dijkstra, "The Humble Programmer," 1,972 Turing
Lecture, Communications of the ACM, Vol. rs No. 10, Oc-
tober 1,972.
9. E.W. Dijkstra, O.f. Dahl, and C.A.R. Hoare, "structured
Programming," Academic Press, London, October 1972.
10. R.W. Floyd, "Assigning Meanings to Programs," Pro-
ceedings of Symposium on Applied Mathematics, Ameri-
can Mathematical Society, Vol. 19, 1967, pp 19-32.

\

Ronald L. Johnston
Ron Johnston graduated from the
University of Cali fornia at S.,nta
Barbara in 1 973 with a BS deg ree
in electr ical engineering and
computer science. He joined HP
Laboratories that same year, de-
signed a CRT-based interactive
text editor, and then helped de-
sign and implement APL\3000.
He's now APL project manager. A
native of Southern Cali fornia, Ron
is married, has a two-year-old
daughter, and l ives in Sunnyvale,
Cali fornia. Besides APL, Ron's

\;  passions are off-road motor-

_w
f *

ycl ing and music-he plays guitar and sings in a duo, the other
l f  of which is his wife. He also serves as counselor for a church

group and as tour director for a youth choir

1 3



APL\3000 Summarv

Monadic
IDENTITY
NEGATE

SIGNUM
RECIPROCAL
EXPONENTIAL
NATURAL LOGARITHM

NOT

ROLL

PI TIMES

CEILING
FLOOR
ABSOLUTE VALUE
FACTORIAL

SHAPE

AXIS IAUXILIARY)
INDEX GENERATOR
REVERSE
TRANSPOSE
REDUCTION

SCAN
RAVEL

GRADE UP
GRADE DOWN

Dyadic
ADDITION

SUBTRACTION
MULTIPLICATION
DIVISION
POWER

GENERAL LOGARITHM

AND
OR
NAND
NOR

LESS THAN
LESS THAN OR EQUAL

EQUAL
NOT EQUAL
GREATER THAN OR EQUAL

GREATER THAN

DEAL

CIRCULAR FUNCTIONS

MAXIMUM

MINIMUM

RESIDUE

BINOMIAL

RESHAPE

TAKE

DROP

INDEXING

INDEX OF

ROTATE

GENERAL TRANSPOSE

COMPRESSION

EXPANSION

CATENATE

MEMBERSHIP

DECODE

ENCODE

EXTENDED EXECUTE

EXTENDED FORMAT

MATRIX DIVISION

GENERALIZED INNER PRODUCT

GENERALIZED OUTER PRODUCT

Primitive Functions and Operators Systerl Variables
!n Alphabet Characters i[LX Latent Expression

!A l  Account  In fo rmal ion  
' lN  

Nu l l  Charac le r

lRl aplCor, Assertion Level IPP p.irt Precision

nAV Atomic vector lew r'.i"t width

!n Backspace Character !n Carriage Return Character

lCT Comparison Tolerance lRL Random Link (Seed)

!o Digit Characters lSN Stack Names

lS Escape Character !f Horizontal Tab Character

lHT Horizontal Tab Positions lTT Terminal Type

IIO Index Origin lTS Time Stamp

!f, Line-Feed Character lVM virtual Memory Characteristics

ILA Largragu lwA Workspace Area Used

lLC Line Counter lWI Workspace Identification

System Functions
Syntax Name

o

(,

:
p

1
J
f t
L J

I

$ o r e
\

/ o f r

\ o r \

Re6ult

CM-
NS-
A V *
NSE

BV-
CV-
NM-
NV-

CM-
BY-

B V -
BV-

NV-
NV-
NV-
NV-
NV-
NV-
NV-

NM-
NV-
N'l/e

CM*

C V -

Notes:

AV:

BV:

CY:

NM;

NSV;

{"},

{NV
{rw
{NV
{NV
{NV

{NV
{BVM
{cvM

!nsr
!nv
r - ^
LK5

!nr
Isrur
!ss
!sr
!svc
lsvo

CV
NV
AV
NS

CVM
CVM

CVM
NSV

CY

CV
CV
NV
CV
CV

CV
CV

CVM

CVM
CVM

CV

!cn
{cv} lcsn
NSV lCV

lll

!nx
lrx
!tt'tv
!Nc

{cv} [Nr,
lqvr
!os
!or

Arbitrary Vector

Boolean Vector

Character Vector

Numeric Matrix

Numeric Scalar or Vector

a Is Optional

Canonical Representation

Capture Stack Environment

Convert

Delay

Expunge

Function Establishment IFix)

Monitor Values

Name Classification

Name List

Query Monitor

Query Stop

Query Trace

Release Stack Environment

Reset Monitor

Reset Stop

Reset Trace

Set Monitor

Set Stop

Set Trace

Shaed Variable Control

Shared Variable Offer

Shared Variable Retract

Shared Variable Query

Vector Representation

BM: Boolean Matrix

CM: Character Matrix

CVM: Character Vector or Matrix

NS: Numeric Scalar

NV: Numeric Vector

EXECUTE
FORMAT
MATRIX INVERSE

!svn
!svq
[vn

i
v
€
f

T

T

E

!
I
o
o

7

A
v

z
A

i \

l *
! '

Symbol
@

I
e
\

t

{
E
l

Overstrike Gharacters
Formed by striking one key, backspacing,stik-
ing other key. Order lmmalerial.

Made with

a *

C: I
a_, -

Symbol Made with
: '
f r  n o

A n *

A l
v l

Miscellaneous
Negative Constant Indicator

Character Constant Delimiter

Assignment

Branch

Evaluated Input, Output

Literal Input, Prompting Output

Grouping

Statement Sepuator

Statement Separator(APLGOL), List Separator

Label Indicator

Comment Delimiter

I
:
t .
I
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APLGOL Control Structures
ASSERT INTEGER EXPRESSION: BOOLEAN EXPRESSION

BEGIN STATEMENT LIST END

CASE INTEGER EXPRESSION OF INTEGER CONSTANT

BEGIN
CASE I"{BEL : STA TEMENT;

CA SE I'AB EL : S TA TEMENT ;

C.A SE LABEL : S TATEMENT ;

{onnnuLr,  sTATEMENT:}
END CASE

EXrr {EXPRESSTON}
FOREVER DO STATEMENT

HALr {EXPnESSTON}
IF BOOLEAN EXPRESSION DO STATEMENT

IF BOOLEAN EXPRESSION THEN STATEMENT
ELSE STATEMENT

ITERATE: CONTROL STRUCTURE NAME LIST

LEAVE: CONTROL STRUCTURE NAME LIST

NULL
PROCEDURE HEADER; STATEMENT LIST END PROCEDURE

REPEAT STATEMENT LIST UNTIL BOOLEAN EXPRESSION

RESTART: CONTROL STRUCTURE NAME TIST

WHILE BOOLEAN EXPRESSION DO STATEMENT

Notes:

{o}: a Is Optional

CONT?OL STRUCTURE NAME LIST: List of Control Structure Names

among CASE, FOREVER, IF,  PROCEDURE, REPEAT, or  WHILE.

E.g. :  IF,CASE

HEADER: Standard APL Function Header, except that Local Variables

Are Preceded by a Comma instead of a Semicolon.

STATEMENT: One of the Above Control Structures, or an APL Expression.

STATEMENTLIST: One or More Statements, Each Terminated by a-Semicolon

Comments Have the Form: e COMMENT TEXTe

Editor Commands
Allows Entry of New Text

Changes Messages to Brief Mode (Short)

Substitutes One String for Another

Copies Text from One Location to Another

Changes the Line Pointer

Deletes Lines in the Edit Text

Changes the Line Increment

Exits Editor, Making Text into a Function

Locates a String in the Text

Prints Information about Editor Commands

Prints Lines of Text

Similar to END, but Locks the Function

Exits Editor, Creating a Character Matrix

Modifies the Contents of a Line

Exits Editor, Discarding the Changes

Replaces Lines of the Text

Renumbers and Moves Text Lines

Negates the Effects of the Last Commands

Exits Editor, Creating a Character Vector

Changes M€ssages to Verbose Mode (Long)

Commands May Be Abbreviated.

System Commands
)BIND

)CLEAR

)coNTrNUE

)coPY wsrD {ruaur rrsr}
)oaeru {rlrrcrn}
)DROP wsrD

)EDrr toB/ECr NAME]

)ERASE NAME LIST

)EXIT
)rrt,ns {cnoue {.accoulr}}
)nus {rrrrrn}
)HELP {coMMAND NAME}

)LANGUAGE {APL on APLGOL}

)lrn {cnour {.accourur}}
)LOAD wsrD

)MPE

)oFF
)PCoPY wsrD {ruane rrsr}

)nnsEr {nuvrnoNMENT NUMBER }

)RESUME

)SAVE {wsrD}
)sr {r'rwnoruuENr NUMBER }
)srv {ENVTRONMENT NUMEER]

)rrnrr,r {rrnurraL IYPE}

)TERSE

)TIME

)VARS {LErrEn}

)vERBosE

)wsrn {wsn}
Noles:

{a}: a is optional

WSID: Workspace Identif icotion

Turns  B ind ing  Messages ON or

OFF

Obtains New, Clean Workspace

tws)
Leaves APL, Saving WS in Work-

space CONTINUE

Obtains Part or AII of a Stored WS

Sets the Execution Stack Size

Deletes a Stored WS

Enters Editor, Working on OBIECT

NAME

Dele tes  Ob iec ts  in  NAME L IST

from Active WS

Leaves APL

Lists Stored Files

Lists Functions in Active WS

Prints Information about System

Commands

Specifies Default Language Pro-

cessor

Lists Stored APL Workspaces

Makes a Copy of a Stored WS the

Active WS

Break from APL to MPE Command

Interpreter

Leaves APL

Like COPY, but Doesn't Replace

Objects

Sets an Environment to the Empty

Environment

Resumes Execution of Suspended

Function

Stores the Active Workspace

Prints the State Indicator

Prints the State Indicator Stack,

with Local Variables

Sets the Terminal Type

Sets  Messages to  Terse  Mode

(Short)

Turns  Ca lcu la to r  Mode T iming

ON/OFF

Prints the Variables in the Active

WS

Sets  Messages to  Verbose Mode

(Long)

Changes the Active WS's Name

A{DD}
B{RrEF}

c{HANGE}
co{PY}
cu{RSoR}
n J F r  F T F I

DELr{A}
END
F{rND}
H{ELP}
L{rsr}
LOCK

MAr{Rrx}

M{oDIFY}

QUIT
plppr acr l

RES{EQUENCE}

u{NDo}
vECtroR]
vER{BosE}

Note:

{o} ;  a Is Opt ional .

TERMINAL TYPE; One of AJ, ASCII, BP, CDI, CP, DM, GSI, or HP

All Commands May Be Abbreviated.

Circular Functions
R * A o B

A R
/ arc rann D

-o 
arc cosh B

-5 
arc sinh B

- 4  
( - 1 + 8 . 2 ) - . 5

-3 
arc tan B

-2 
arc cos B

-1 
arc sin B

o  ( 1 - B  . 2  ) . . 5

R

sin B
cos B
tan B
(1 +B .2 )  - .5

sinh B
cosh B
tanh B

A

1

2

5

6
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SPECIFICATIONS AND FEATURES
APL\3000 (Language Subsystem 32105A)

APL\3000 is a language subsystem that runs under the control of lvlult i-
programming Executive (MPE) on the HP 3000 Series l l Computer.
COMPATIBILITY: APLSV compatible, including system functions and variables,

shared variable mechanism, Format (i), Execute (r), Scan(\), and iratrix
Inversion and Division (E).

FILE SYSTEM: Full access to the l\4ultiprogramming Execulive (MpE) fi le system
allows private or shared li les via the Shared Variable mechanism, communica-
tion with other language subsystems, access to peripheral devices (l ine printers,
card readers, magnelic tapes, discs, etc.).

APLGOL: An alternate language that provides modern ALGOL-like control struc-
tu res  in  an  APL env i ronment .  lF -THEN-ELSE,  BEGTN-END,  WHTLE-DO,
REPEAT-UNTIL, CASE, and ASSERT are among the constructs available.

EDITOR: Full lunction and text editing tacilities are provided lor by a powerful
new editor. Includes features never before available to ApL programmers, among
them the ability to create and edit matrices and vectors. Provides such com-
mands as CHANGE, COPY, FIND, RESEQUENCE. and UNDO. as wer as
a HELP facil i ty for the novice or occasional user.

CONCEPTUAL DATA TYPES: Character and Numeric.
ACTUAL DATA TYPES: APL automatically chooses the appropriate inlernal

representation for dala from the following types:
CHAFACTER: represented by 8-bit codes following the code assignments out-

lined by !AV. Codes incjude lNercase ASCII alphabetiG, ontrol cooes.
BIT: values 0 and 1 packed 16 per machine word lor data of rank 1 (vector) or

greater (array).
INTEGER: integer values within the range 327 68 lo 32767 are stored as 1 6-bit

signed integers.
REAL: real values within the range te-256,2+2561 are stored as 64-bit

f loating point numbers. 1 6 decimal digit accuracy.
MAXIMUM ARRAY RANK: 63 dimensions.
MAXIMUM ARRAY SIZE: 32,767 elements.
ARITHMETIC PROGRESSION VECTORS: Integer vectors that can be de-

scribed by the form A +B x lC are stored as Arithmetic progression Vectors
(APV's), which require no data areas.

SHAFED DATA AREASi Variables of rank 1 (vector) or greater can share the same
data areas, avoiding multiple copies of the same dala. Shared data areas are
duplicaled only if one of the sharing variables attempts to change its data.

WORKSPACE SIZE: Limited only by the amount of on-line disc storage available.
Init ial size:32,767 bytes. Automatically made larger as necessary. practical
l imit: 400,000,000 bytes.

TERMINAL SUPPORT: Accepts terminals, with or without an ApL character set.
that use a standard ASCII interface at soeeds from 110 to 2400 baud. pro-
visions made for both bit and character pairing terminals. Special support
given lo the HP 264 1 A Display Station to take advantage of its special features.
The lollowing other terminals have been tested: Anderson Jacobson 630,
Computer Devices Teleterm 1030, Data Media Elite 1520, Gen-Com Svstem
N,lodel 300.

ENVIRONMENT: Runs as a standard subsystem under control of Multipro-
gramming Executive (MPE). Allows batch ApL jobs, simultaneous use of
five other languages (BASlC, COBOL, FORTRAN, Ftpc, and SpL), networked
access to other HP 3000's.

SYSTEM REOUIREMENTS AND PERFOBMANCE: The minimum system re-
quired is an HP 3000 Series l l with 256K bytes of memory operating under MpE ll;
for multi l ingual operation, at least 384K bytes of memory is needed. Operation
with 10 or more terminals requires full memory (512K bytes). Maximum
recommended number of simultaneous ApL users is 1 6.

INSTALLATION: APL\3000 includes hardware microcode and must be installed
by a lactory authorized Cuslomer Engineer. Installation is included in the l ist
price.

OROERING INFORMATION:  32105A ApL\3000 Subsys tem.  Inc tudes  the
dynamic  compi le r ,  hardware  mic rocode,  and the  ApL\3000 Re lerence
Manual (321 05-90002). All software supplied in object code torm only.

PRICE lN U.S.A.: $15,000.
MANUFACTURING DIVISION: cENERAL SYSTEMS DtVtStON

5303 Stevens Creek Boulevard
Santa Clara, Cali lornia 95050 U.S.A.

S P E C I F I C A T I O N S
HP Model 2641A APL Display Station

General
SCREEN SIZEr 127 mm (5 in) x 254 mm (10 in)
SCREEN CAPACITY: 24 l ines x 80 columns (1,920 characle0
CHARACTER GENERATION: 7xg enhanced dot matrix; 9x15 dot character

cell; non-interlaced raster scan
CHAFACTER SIZE: 2.46 mm (.097 in) x 3.175 mm (.125 in)
CHABACTER SET: 128 character APL; 64 character upper-case Roman: 64

characler APL overslrike. (Nole: the 2641A supports only one additional

characler sel
CURSOR; Blinl
DISPLAY MOD

bright, underl
REFRESH RA]
TUBE PHOSPI
IMPLOSION PI
MEMORY: MO

max. (16K in,
OPTION SLOT
KEYaOARD: E

soft keys, ar
cursor pad; n

CARTRIDGE T
READ/WRITI
SEARCH/RE
RECORDINC
I\,l|INI CARTR

DATA RATE: 1
selectable. ( '
mode may re

STANDARD A
dard RS232(
2O2ClDlSll n
for halt duple

OPTIONAL CO
cations data I

Cutrent loc
Asynchron(
Synchronor

TRANSMISSIO
OPERATING M
PARITY: Switcf

TEMPERATUR
NON.OPERA

OPEHA
TEMPERATUR

NON.OPERA
OPERA

HUMIDITY: 5 tc
ALTITUDE:

NON.OPERA
OPERA

VIBRATION AN
in original shi

VIBRATIOI
SHOCK:3(

DISPLAY MON
KEYBOARD W
DISPLAY MON

(17.5  in  W x
648 mm D (2

KEYEOARD DI
x 8 . 5 i n D x

INPUT VOLTA(

POWER CONS

PROOUCT ME
teaching equ
labels are apl

Here is an e)
Roman chari
and live extra
2641A
-001
-007
-013
-202

13232N
PRICE lN U.S.r
MANUFACTUF

characler set.)
CURSOR; Blinking underline
DISPLAY MODES: White on black; black on white (inverse video), blinking, half-

bright, underline.
REFRESH RATE:60 Hz (50 Hz optional)
TUBE PHOSPHOR: P4
IMPLOSION PROTECTION: Bonded implosion panol
MEMORY: MOS ROM: 24K bytes (program); RAM: std. 4096 bytes; 12 kilobytes

max. (16K including max. dala comm. butter)
OPTION SLOTS: 5 available
KEYaOARD: Detachable, full APL/ASCll code bit-pairing keyboard, user-defined

soft keys, and 18 additional @ntrol and editing keys; ten-key numeric pad;
cursor pad; multispeed auto-repeat, N-key roll-over; 1.22m (4 foot) cable.

CARTRIDGE TAPE (option): Two mechanisms
READ/WRITE SPEED; 10 ips
SEARCH/REWIND SPEED: 60 ips
RECORDING:800 bp i
NrlNl CARTRIDGE: 110 kilobyte capacity (maximum per cartridge)

Data Communications
DATA RATE: 110, 150,300, 12OO,24OO,4800,9600 baud, and external. Switch

selectable. (110 selects two stop bits). Operating above 4800 baud in APL
mode may require nulls or handshake protocol to insure data integrity.

STANDARD ASYNCHRONOUS COMMUNICATIONS INTERFACE: EIA slan-
dard RS232C; fully compatible with Bell 103A modems; compatible with Bell
202C/D/S/T modems. Choice of main channel or reverse channel l ine turnaround
for halt duDlex ooeration.

OPTIONAL COMMUNICATIONS INTERFACES (see 132604/B/C/D Communi-
cations data sheet lor details):

Cutrent loop, split speed, custom baud rates
Asynchronous Mullipoint Communications
Synchronous Mullipoint Communications - Bisync

TRANSMISSION MODES: Full or half duplex, asynchronous
OPERATING MODES: Onlinei otf-l ine; characler, block
PARITY: Switch selectable; even, odd, none

Environmental Conditions
TEMPERATURE, FREE SPACE AMBIENT:

NON-OPERATING: -40 to +75'C (-40 to + 167'F)
OPEHATING:0  to  55 'C (+32 to  +131"F)

TEMPERATURE, FREE SPACE AMBIENT (TAPE):
NON-OPERATING:  -10  ro  60 'C ( -15  ro  +140 'F)

OPERATING: 5 to 40'C (+41 to 104'F)
HUMIDITY: 5 to 95o/o (non-condensing)
ALTITUDE:

NON-OPERATING: Sea level to 7620 metres (25,000 fee0
OPERATING; Sea level to 4572 metes (15,000 tee0

VIBRATION AND SHOCK (Type tesled to quality for normal shipping and handling
in original shipping carton):

VIBRATION: 37 mm (0.015 in) pp, 10 to 55 Hz, 3 axes
SHOCK:309,  11ms,  1 /2  s ine

Physical Specif ications
DISPLAY MONITOR WEIGHT: 19.6 kg (43 pounds)
KEYBOARD WEIGHT: 3.2 kg (7 lbs)
DISPLAY MONITOR DIMENSIONS:444 mm W x 457 mm D x 342 mm H

( 1 7 . 5  i n  W  x  1 8  i n  D  x  1 3 . 5  i n  F ,
648 mm D (25.5 in D) including keyboard.

KEYEOARD DIMENSIONS: 444 mmW x 216 mm D x 90 mm H (17.5 in W
x 8 . 5 i n D x 3 . 5 i n H )

Power Requirements
f NPUT VOLTAGE: 1 1 5 ( + 1 0% - 23/ol at 60 H2 (!O.2o/ol

23O (+'tO/. -23o/4 at 50 Hz l!0.2%)
POWER CONSUMPTION: 85 W to 140 W max.

Product Safety
PROOUCT MEETS: UL requirements for EDP equipment, otfice appliances,

teaching equipment; CSA requirements lor EOP equipment; U.L. and CSA
labels are applied to equipment shipped to the U.S. and Canada.

Ordering Example
Here is an example lor ordering a 2641A Terminal with upper and lower case
Roman character sets, line drawing character set, cartridge tape capability
and live extra cartridges to be operated over phone lines:
2641A APL Display Station
-001 Adds Lower Case Roman Character Set
-007 Adds Cartridge Tape Capabilily
-013 Adds Five Mini Cartridges
-2O2 Adds Line Drawing Character Set

13232N Adds 103/202 l\4odem CablFl5 ft.
PRICE lN U.S.A.: 2641A, $4'100. 2641A as above, $6'1 15.
MANUFACTURING DIVISION: DATA TERMINALS DIVISION

19400 Homestead Road
CuDertino. California 95014 U.S.A.
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A Dynamic Incremental Compiler for an
Interpretive Language
by Eric J. Van Dyke

A PL OFFERS THE USER a rich selection of primi-

A t i r r "  funct ions and funct ion/operator  com-
posites. Powerful data structuring, selection, and
arithmetic computation functions are provided, and
their definitions are extended over vectors, matrices,
and arrays of larger dimension, as well as scalars.

Evaluation of complex expressions built from such
terse operations is necessarily quite involved. Code
must be generated and executed to apply primitive
functions to one another and to data atoms, with
whatever type checks and representation conversions
are required. Nested iteration loops must be created to
extend the scalar functions over multidimensional
array arguments, and these must include data con-
formity and index range checks.

All of this gathering and checking of information
concerning data/ funct ion in teract ion and loop
structure-and its high overhead expense-is, in the
typical naive APL interpreter, simply thrown away
after the execution of a statement. This is because the
nature of APL is dynamic. Attributes of names may be
arbitrari ly changed by programmer or program. Size,
shape, data type, even the simple meaning of a name
(whether a data variable, shared variable, label, or
function), are all subject to change (Fig. f). Assump-
tions cannot be bound to names at any time and be
counted on to remain valid on any subsequent loop
iteration or function invocation. For this reason, APL
has traditionally been considered too unstable to
compile.

From this dilemma-high cost and wasted over-
head that penalize interpretation but instability that
prevents compilation-grew the dynamic incremen-
tal compiler of APL\SOOo.

Compile Only as Required
The APL\3000 dynomic incrementol compiler is

an interactive compiler/interpreter hybrid. It is a
compiler that generates and saves executable object
code from a tree representation of each new APL
expression for which none already exists. (In general,
each assignment statement, branch, or function invo-
cation is considered an expression.) It is also an in-
terpreter that immediately evaluates every expression
of a statement or function. Whenever possible, previ-
ously compiled and saved code for an expression is
re-executed. Only when absolutely necessary is new
code generated. Thus stable expressions are com-

piled, while those with dynamically varying attri-
butes and those that are executed only once are, in
essence, interpreted. The overhead of new code gen-
eration is borne only when necessary, often only
once. This scheme of infrequent overhead provides
justification for costly optimizations, including the
dragalong and beating discussed below, that lead to
more efficient code.

A balance between compiling and interpretation is
accomplished through the generation and execution
of signcture code, binding instructions that are emit-
ted before the code for an expression. Their purpose is
to specify and check the attributes that are bound into
the following code, that is, constraints that may not
change if the compiled code is to be re-executed.
Signature instructions are generated that test index
origin (0 or 1), meaning of names (whether data vari-
able, shared variable, or otherwise), type and dimen-
sions of expressions (representation, size, and shapeJ,
access information for data (origin and steps on each
dimension), and run-time index bounds checks.

These signature instructions are bypassed on the
first execution after compilation, when all assump-
tions are guaranteed satisfied. On subsequent execu-
tions, the signature code is used to test the validity of
the code that follows. If these assumptions are found
to be invalid, the code "breaks". Execution is re-
turned to the compiler and code with a new set of
assumptions is generated (Fig. 2). On recompilation,
an expression is assumed unstable and a not-so-

Fig. 1. APL is dynamic. Attributes of names may be arbitrarily
changed by the programmer or by a program. For this reason,
APL has been considered impossible to compile.

ANS<- A+B

Integer Scalar VariaUte I
Dyadic Primitive Function- [A Numeric Value]
Integer Scalar Variable-

ANS<_ A+B

Real Vectol I t
Dyadic Primilive Function lA Domain Errorl
Character Matrix Variabl

ANS<- A+B

lA Numeric Valuel
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New
Expression

Previously
Compiled

Expression

Fig.2. ln APt\3000, expresslons are compiled when first
encountered. Along with the compiled code signature codels
generated, specifying constraints that must be met if the code
/s lo be re-executed. This signature code is tested on sub-
sequent invocations of the expression, and if the constraints
are not met, recompilation is required.

specif ic but somewhat slower and less dense form of
code is generated. Further changes may not force a
recompilat ion.

Wait as Long as Possible; Do as Little as Necessary
The secret to compiling efficient code is in gather-

ing, retaining, and exploiting as much information
about the entire expression as possible before generat-
ing code. The more context that can be recognized,
the more specific "smarts" can be tailored into the
code. For this reason, the APL\3000 compiler oper-
ates in two distinct functional passes: context gather-
ing and code generation.

The context gathering, or foliation, phase of compi-
lation is a complete bottom-up traversal of the expres-
sion tree. Fig. 3 shows an example of such a tree.
Description information is associated with each of the
constant and variable data nodes-the leaves of the
tree. These descriptions are then "floated" up to in-
teract with the parent node. Descriptions are revised
and attached to the coresponding node as necessary
to suit the result. This process continues as descrip-
tions are gathered and carried up through each func-
tion or operator node toward the root. Attached to the
final assignment or branch node will be a context
description for the entire expression. Fig. 4 shows the
foliated tree for the expression of Fig. 3.

The information created by this foliation process
consists of a set of auxiliary description nodes at-
tached to each node in the expression tree. Each of
these description groups contains the attributes of the
result of the expression to which it is attached, as
modified by that function and those below, First in
the set of descriptor nodes is a single RRR node, which

Expression Tree for aNs +- 1.1 + 2 3 p I 6

Fig, 3. The tree representation of an expression. The
APL\3000 compiler traverses this tree twice, once f or context
gathering and once for code generation.

describes the general structure of the current expres-
sion: RANK (number of dimensions-for scalar, 0),
REPRESENTATION (internal data type), and nuOs (size of
each dimension-for scalar, there is none). Linked to
the nnn node is a chain of onLorr nodes. or data access
descriptions, at least one for each non-scalar data item
in the expression. A lslopF node indicates the order
in which an item is accessed and stored-row major,
for example-by means of an oprser (origin), and a
DEL (step) for each coordinate. Notice that these de-
scriptions are independent of the data; storage need
not be accessed during this foliation process.

Frequently, data storage is shared. In such cases,
multiple descriptors are created, perhaps with differ-
ing access schemes. Each addresses the same shared
area. A common form of vector data created by the
INDEX GENERATOR function is the arithmetic progres-
sion vector (APU. This vector may be completely rep-
resented by its descriptor; no data area is necessary at
all. For example, z+Jxrlrequires only the descriptor:

RHO: 4 OFFSET: 5 DEL: 3
to represent the values 5 I 11 14.

Dragalong and Beating
It is the gathering and manipulation of these data-

independent descriptors, following the dragalong
and beating strategies developed by Abrams,l that
makes possible the extensive optimizations incorpo-
rated in  APL\3000.

Drogolong, the strategy of deferring actual evalua-
tion as far as possible up the expression tree by gather-
ing descriptions, avoids the naive interpreter's usual
one-function-at-a-time "pinhole" evaluation. In-
stead, the code for a collection of parallel functions,
including their associated loops, can be generated
and executed simultaneously. Fig. 5 compares naive
with dragged code.

Beating, the application of Abrams' subscript cal-
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Fig,4. Foliatedexpressiontreeresultsfromthecontextgatheringphaseof compilation.Auxiliary
description nodes contain the aftributes of the sub-expression to which thev are attached.

culus to a deferred expression when evaluation is
finally required, produces the desired results for cer-
tain APL functions by description manipulation
alone. In such cases, the original data is shared with
the beaten result, making it unnecessary to copy the
data in a different form. Thus data is touched only
when and only as much as necessary. (Data sharing is
described in more detail in the article beginning on
page 6,) suBSCRIprIoN, RESHAPE, RAVEL, TAKE, DRoP,
REVERSAL, and monadic and dyadic TRANSPoSE are the
functions to which beating optimizations may be
applied (see Fig. 6).

The dragalong and beating strategies can signifi-
cantly reduce the amount of data access and storage,

computation and looping overhead, and often tempo-
rary storage required in the evaluation of an expression.

An independent context gathering pass during

compilation provides an opportunity for a number of
specific optimizations in addition to dragalong and
beating. For example, a pair of adjacent monadic nno
nodes can be recognized as a new internal naNr func-

tion. The result is merely the rank of the argument as
indicated by its description, eliminating the need for
an intermediate rho vector (see Fig. 71. Similarly,
successive CATENATE nodes can often be incorporated
into a new multi-argument PoLYCAT function, elimi-
nating the superfluous data moves and intermediate
storage that would normally be required (Fig. 8).

Fig. 5. Evaluation of an expres-
sion is deferred as long as pos-
slb/e. Ihls strategy, called drag-
along, rnakes lt possib/e to gener-
ate and execute the code for a
number of parallel functions simul-
taneously, avoiding the naive in-
terpreter's oneJunction-at-a1i me
evaluation. Shown here is a com-
parison of naive with dragged
code fot ANS-A*BXC. t,  a, and c
are contormable vectors.

Naive Dragged

INITIALIZE INDEX 1 AND LIMIT INITIALIZE /NOEX AND L/M'T

WHILE /^/DEX 1 I LtMtT DO WHILE /NDEX + LtMtT DO

BEGIN  BEGiN

rEMpoRARy luoex t1*sl1^tsEx llxcItNDEx 7l ANsUNoExl*ayrotrr+alttoex)xcluoexl

INCREIV1ENT INDEX 1 INCREMENT 'NDEX

END

INITIALIZE /NOEX 2

WHILE /NDEX 2 I LIMII DO

BEGIN

eus luoex z l -e luoex z)+reueoamvfruoex z)

INCREIVIENT INDEX 2

END
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Fig.6. When evaluation is finally required, beating, or the
application of the subscript calculus to a deferred expression,
may produce results by description manipulation alone.Here
rexe (I) and nrwasnt ($) are applied to descilptions for a
simple expression. The dragalong (see Fig. 5) and beating
slrategies can significantly reduce the computation and stor-
age required in the evaluation of an expression.

Gode Generation
When the compiler is finally forced to materialize

an expression-either the root has been reached, or
the compiler can drag no farther for one reason or
another-code is emitted. This code generation pass
is a second independent walk of the foliated tree with
dragged and beaten descriptions attached, this time
from the top down, generating and saving executable
code for the expression. By exploiting the context
descriptions that have been gathered up the tree from
each node, specifically tailored code can be gener-
ated. Because APL in general deals with arrays, this
process also usually involves the construction of
loops.

APL \3000's target machine is a software/firmware
emulator implemented on the HP/3000. The instruc-
tion set, in addition to loads, stores, and loop and
index controlling instructions, includes a set of high-
level opcodes that match the APL primitive scalar
functions. Code generation from an expression fol-
lows a recursive descent of the tree: an instruction to
set up a storage area for the result (typically a tempor-
ary) is emitted, followed by a reverse Polish sequence
of data loads and operations, and finally a store into
the result, all nested within the necessary loops.

Any instruction that has the potential to fail carries
within it a syllable number that provides the machine
with a pointer to the original source in case of an
error, allowing for recompilation on binding errors or
message generation on usel enors.

The descriptions at the root node completely de-
scribe all index variables and iteration loops to be
generated. Each nsLoFF node, with optimizations
beaten in, describes the initialization tOrpsul and
stepping tonr) of an index register. The loops, one for
each dimension of the result, in general, are derived
from the RRR in conjunction with a selected DELoFF.
Loops are all of a basic structure:

INITIALIZE ALL INDEX REGISTERS
INITIALIZE LIMIT REGISTER
WHILE CHOSEN INDEX f LIMIT DO

BEGIN
INITIALIZE LIMIT REGISTER
WHILE CHOSEN INDEX * LIMIT DO

BEGIN

:
(Indexed Expression Code)

,.
INCREMENT ALL INDEX REGISTERS
END

INCREMENT ALL INDEX REGISTERS
END

Equality, unlike > and <, is a consistent termina-
tion condition for loops that may run in any direction.
For each loop, a DELorr node is selected to serve as the
loop-controlling induction variable. Because of their
special uses, certain indexes are not eligible (those for

F19.7. The context gatheilng pass provides an opportunity
for specific optimizations, such as recognizing a pair of adja-
cent monadic ano nodes as lhe new internal aANx function.

In
r RANK
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A Controller for the Dvnamic
Compiler

by Kenneth A. Van Bree

The control ler for the dynamic compiler performs al l  of the
tasks an interpreter for APL must perform, such as handling user
input and edit ing, sequencing between l ines of a function,
cal l ing and returning from user-defined functions, and handling
errors. In addit ion, the control ler handles the generation and
re-execution of compiled code for APL statements.

One of the guiding assumptions in the design of the control ler
was that code for a part icular statement could be compiled once
and wou ld  remain  va l id  fo r  many re -execut ions  o f  tha t
statement. This assumption was based on the observation that
most APL programmers do not take ful l  advantage of the
dynamic capabil i t ies of APL. Changes in the value or size
(number of elements) of a variable are f requent, but changes in
the shape or representation of a variable are rare. For this
reason, the control ler has been designed to re-execute com-
pi led code as quickly as possible, while st i l l  maintaining the
flexibi l i ty needed to perform al l  the other duties related to
control l ing an interactive language such as APL.

The control ler consists of f ive interacting modules as shown in
the diagram. Each module performs a subset of the duties
related to control l ing the compiler, and any module can cal l  on
any other module to perform a task that it cannot do itself. The
normal f low of control for an APL expression input by the user ( in
calculator mode) is as fol lows:

Text for the expression is input by the user through the user
input  and ed i t ing  modu le .  Th is  modu le  i s  in  charge o f  a l l
interactions with the user, and before control leaves this
module, al l  text that the user enters is converted into an internal
form called S-code. S-code ts a compact form of the text, with
each identi f ier replaced by an internal short name for easy
reference, The actual text that the user enters is not saved, but is
regenerated from S-code i f  needed.

Once S-code has been created. control is oassed to the l ine
statement sequencing module, which handles the dynamic f low
of control between l ines and statements in APL. As each
statement is executed, this module checks to see whether i t  has
been executed before. lf a statement has never been executed
before, a syntax analysis is done on the S-code lor that
statement. The result of the syntax analysis is one or more syntax
trees called D{rees. Each Dlree represents the largest part of
an APL statement that can be guaranteed to have no side

effects. For example, in the statement AeB+C, i f  C is a
user-defined function, then the statement wil l  be broken up into
two trees. The f irst tree wrl l  material ize the function C into a
temporary variable, and the second tree wil l  add the results of C
to B and assign the sum to A.

As soon as D{rees have been created for a statement, control
is passed to the executable code creation/sequencing module.
Within this module, each D{ree for a statement is examined in
sequence, and i f  i t  does not represent a function cal l ,  i t  is
passed to the dynamic compiler. The compiler turns each
D{ree into a block of executable code called E-code. The
compiler cal ls the execution machine direct ly to execute the
E-code that i t  has created

Once a valrd block of E-code has been created from a D-tree
the executable code creation/sequencing module is in charge
of storing that E-code block for later reference. As each D{ree is
compiled, the E-code block created is used to replace the
D-tree. When al l  trees for a statement are compiled there wil l
exist a series of E-code blocks that represent the statement. On
subsequent executions of a statement, the E-code blocks are
retr ieved and given direct ly to the execution machine. l f  the
code contarns a nonJatal error such as a change in representa-
t ion or rank of a variable, the execution machine returns a
nonjatal error indication to the executable code creation/
sequencing module, which cal ls the non-fatal error handler to
conect the problem. The non-fatal error handler recreates a
D-tree for the part of the statement affected by the nonjatal
error. New E-code is then compiled with the nonjatal error
corrected, and the new E-code block is saved in place of the
one in which the error was found,

l f  the executable code creation/sequencing module detects
that a part icular D-tree represents a function cal l ,  then control is
oassed to the user-defined function cal l  and return module. l f
the l ine statement sequencing module detects a function relurn,
i t  can also pass control direct ly to the user-detined lunction cal l
and return module.

l f  any of the other modules detects a fatal error, such as an
undefined variable or a syntax error, control is passed direct ly to
the fatal error handler. This module suspends execution, prints
an error message for the user, and then returns control to the
user input and edit ing module to wait for input from the user.

Controller
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single-element arrays that will never be incremented,
for example, or the left indexes of covpRess and nx-
PAND, which are incremented asynchronously).

A limit for each loop, calculated as oFFsET + RHo x
DBL (on the appropriate coordinate, from the chosen
induction variable) plus the current induction vari-
able, is also created in a register. Except for the outer-
most (or only) loop limit, which may be constant, the
limit value must be calculated at execution time. In-
itialization values and increments for all indexes cor-
respond to the oFFSETs and orm of their associated
DELoFF descriptors. Fig. 9 shows the code generated
for a vector expression.

A number of optimizations are performed prior to
the generation of loops. Except for actual display, an
expression represented as an arithmetic progression
vector (Apv) requires no evaluation loop at all; its
description completely specifies the result. Redun-
dant index variables, which would run in parallel, are
shared by collecting those DELoFF nodes having iden-
tical attributes into a single register. If, according to
the descriptors, a loop is unnecessary, as is often the
case with row-major compact storage, it is collapsed,
subsumed by the next outer loop.

In addition, certain improvements in the code can
be made. Unlike larger data structures, in which data
can be partially destroyed if an error is encountered,
scalar and single-element expressions can be gener-
ated without assignment to an intermediate tempor-
ary variable, eliminating the setup, some use of stor-
age area, and the resulting data swap. Occasionally,
when the result produced from such a unit expression
involves itself, a new data area need not be set up at
all. Instead, the old name is retained for the result of
the expression, Subexpressions yielding a scalar or
single-element array within the scope of a loop can
frequently be materialized, or assigned into a tempor-
ary cell, outside the loop, eliminating their repeated
evaluation. The more complex argument to an ouTER
PRoDUCT operator can similarly be constrained to an
outer code loop, affording it less frequent evaluation.

Hard and Soft Code
The code generated by APL \3000 is of two types.

Fig. 8. Another optimization that
can be effected during context
gathering is combining succes-
sive cntu'tett nodes into a new in-
ternal potycnr function.

Init ially, hard or t ight code is produced. In this style
of code, the Ruos, OFFSETs, and nrLs, as well as RANK
and nnpRrsENTATIoN are bound into the instructions
as constants. If this specific form of code has broken
and a recompilation is required, more general soft or
loose code is generated, in which only the RANK and
REpRESENTATION are bound. RHos. DELs. and oppsnts
may be calculated in registers at run time. Thus the
dimensional attributes of an array may dynamically
change without invalidating the code again.

SET UP STORAGE AREA FOR RESULT IEMP

INITIALIZE STOR/NG INDEX TO O

(oFFsET FOR ANs AND TEMP)

INITIALIZE VECIOF AccEss,NG INDEr TO 2

(OFFSET FOR VECTOF BEATEN BY q)

INITIALIZE APy AccEss/NG INDEr TO 1

(oFFs€r FOR r3)

INITIALIZE uMff  TO 3
(RHo x DEL + 9FFSET +sroF/NG t/vDEx)

WHILE sIoR'NG INDEX+LIMIT DO

BEGIN

LOAD APv /4ccEss//vc /NDEX

INTEGER LOAD OF vEcroR lvEcroR AccEssrNG /NDEXI

INTEGER N4ULTIPLY

CONVERT TO REAL

REAL LOAD OF CONSTANT 1,1

REAL ADD

REAL STORE INTO rEMp lsrop/Nc /NDEX]

INCREMENT sroB/,vc INDEr gY 1

(DEt FOR ANS'AND IEMP)

INCREIVENT yEcroF AccEssING /NDEX BY 
_1

(DEL FOR VEcToR BEATEN BY $)
INCREIVENT APy AccEss,NG INDEX BY 1

(DEr FOR 13)

END

SWAP TEMP INTO A,VS

Fig,9. When the compiler can drag no farther it emits code.
The code generation phase ls a second traversal of the (now
foliated) expression tree. Because APL in general deals with
arrays, code generation usually involves the construction of
/oops. Shown here is the code generated tor the expresslon
ANS-1.1 + (+vECroB)x13. vrcroa is an integer vector of length 3.
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Hard

SET UP STORAGE AREA FOR RESULT TEMP

INITIALIZE STOF/NG /,VOEX TO O

INITIALIZE VECTOB ACCESS/NG INDEX TO 2

INITIALIZE LIMIT TO 3

WHILE STOR'NG INDEX I LIMIT DO

BEGIN

LOAD 1

LOAD vEcIoF [yEcIoR AccEss/NG /NDEX]

ADD

STORE INTO rEMPlsroqtNG tNDExl

INCREMENT sToF/NG /NDEX BY 1

INCREMENT VECTOR ACCESSING 'NOEX BY

END

SWAP I€MP INTO A/VS

Soft

SET UP STORAGE AREA FOR RESULT TFMP

INITIALIZE STORING /NDEX TO O
INITIALIZE vEcToR AccEssING //VDEX TO

(RHO-1) x DEL + OFFSET FROM VECTOF

INITIALIZE VEcIoR AccEss/NG IN'REMENT TO

DEL FROM YECIOR

INITIALIZE LIMff TO AHo FROM yEcIoR

WHILE sroB/NG INDEr I LIMIT DO

BEGIN

LOAD 1

LOAD y€croR [vEcroF AccEsstNG tNDEx]

ADD

STORE INTO rEMp[sroRtNc tNDEx]

INCREMENT STOF/NG /NDEX BY 1
INCREMENT yEcIoF AccEss/NG /NDEX BY

YECTOF ACCESSING INCREMENT

END

SWAP TEMP INTO ANs

- 1

Fig, 10. Code generated is of two
types. lnitially, hard code is pro-
duced. lf this code later breaks,
more general soft code is gener-
ated. Shown here is hard versus
soft code for the expresslon
/NS. (oyFCrOB) + r. VtCTOA iS an in-
teger vector of length 3.

For this more flexible form of instruction a price is
paid in terms of speed and code bulk, but this over-
head cost rarely approaches that of an entire recompi-
lation every time a RHo, OFFSET, or DEL changes.
Notice that RANr and RspRssENTATroN must always be
bound hard. naNr, which specifies the maximum
number of loops to be generated, must have a constant
value at compile time. nnpnESENTATIoN must be
known to determine the data type of the instructions
issued. A change in either of these attributes always
forces a new compilation.

Fig. 10 compares hard and soft code emitted for a
vector expression.S

Reference
1. P.S. Abrams, "An APL Machine," PhD dissertation,
SLAC Report No. 114, Stanford University, February 1970.
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Extended Control Functions for
Interactive Debugging

by Kenneth A. Van Bree

Several system functions faci l i tate debugging and program
development in APL. Using the function [ss (set stop) i t  is
possible to stop on any or each l ine of a function or on return
from the function. Tie [sr (set trace) function allows the last
result calculated on a l ine to be displayed along with the function
name and l ine number. This is helpful for observing program

flow. The lsv (set monitor) function al lows the user to monitor
the number of t imes that a function and/or l ine has been exe-
cuted, along with the amount of CPU t ime spent in each l ine, and
the total CPU t ime spent in the function. These functions can be

(continued on page 24)
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used to determine where the majori ty of the CPU t ime is being
spent on a part icular problem and which l ines of a program have
never been executed. Al l  of the monitoring faci l i t ies can be
turned on or off  and queried under program control.

One reason that program development is so easy in APL is
that the entire power of APL is avai lable to the user during
program debugging, When the APL system detects an error in a
user program (for example, an attempt to read a variable that
hasn't  been given a value), the program is halted and an error
message is writ ten on the user terminal. The error message tel ls
the user the type of error (a vnrur rnnoR in this example) along
with a pointer to where the error was detected. The APL system
then returns control to the terminal so the user can try to correct
the error. At this point the state indicator (Sl) may be displayed.
The state indicator is a pushdown l ist ( i .e.,  stack) of al l  the
user-defined functions that have been called but have not yet
completed execution. The state indicator displays not only the
names of the functions that have been cal led, but also the l ine
number on which execution was suspended. In addit ion, a l ist of
al l  the local variables can be obtained for each function that has
been cal led but not completed. The function in which the error
was found is the topmost entry on the Sl and is cal led a sus-
pended function. Other functions on the Sl are cal led pendant
f unctions.

While computation is suspended, the user has the ful l  power
of APL avai lable to him for debugging. The suspended function
(or any other function that is not pendant) may be edited, and
any variable that is avai lable within the suspended function may
be anterrogated or redeftned. A new computation may be started
by cal l ing another function, or in most cases the suspended
computation may be resumed from the l ine at which i t  was
suspended or any other l ine. l f  for some reason the user does
not wish to f ix the error, the Sl can be cleared, or the entire
workspace including the Sl can be saved for later reference.

The f lexibi l i ty and power avai lable to the user during debug-
ging make i t  possible to detect and correct mult iple errors
during the course of the computation. This means that programs
often run to completion the l i rst t ime they are cal led, because
most errors can be fixed as they are detected. A recent study of
APL in Europel showed that the conciseness of APL coupled
with i ts ease of debugging produced a 3:1 improvement an
programmer productivi ty over such languages as PUI and
coBoL.

Extended Control Functions
The state of an APL computation can be displayed at any t ime

by interrupting the computation (by sending the ArrENr oN
character) and displaying the state indicator through the use of
the commands )si or )stv. The state indicator shows al l  of the
functions that have been called but have not yet completed
execution, along with the variables that are local to those func-
t ions, The current environment conslsts of the variables that can
be accessed with in the topmost f  unction on the stack, along with
the chain of control represented by the function cal ls that ap-
pear on the Sl. Normally, within APL, any computation must be
done in the current environment, For example, i f  the function r
(which has local variable v) cal ls function o (which also has local
variable v), and computation is suspended within c, the Sl might
appear as fol lows:

In this environment the value of variable v is whatever has been
assigned within function c. The value of v withjn function r has
been shadowed (by the local variable v within o) and is not
accessible within the current function. Al l  names accessible
from function c make up the environment of c, and the local
variable v of function r is not in the environment of c. Further-
more, it is not possible to resume execution of function r without
f irst completing function c, since the Sl operates str ict ly on a
lasf inJirst-out basis.

Through the  use  o f  the  ex tended cont ro l  func t ions  o f
APL \3000 i t  is possible to access variables and resume execu-
t ion in environments other than the current environment. The
concept of mult iple environments is not new,2 but i t  has never
been implemented in APL before. ApL\3000 al lows uo to .16

environments to be avai lable at one t ime. Each environment has
its own state indicator, and control can be passed from one
environment to another through the use of the extended execute
(t) function. Although the normal Sl in APL obeys a str ict stack
discipl ine, the environments of ApL\3000 may create one or
more computation trees. This allows the creatron of environ-
ments that share a port ion of their Sl.  When th js happens, i t  is no
longer possible to maintarn a stack discipl ine for the Sl, and a set
of pointers must be maintained that l inks each function cal l to i ts
cal l ing function. The extended control functions matnratn a
stack discipl ine for the Sl unless the user expl ici i ly cal ls for a
tree-l ike control structure. The overhead paid for the extended
control capabil i ty is minimal unless i t  is invoked by the user. In
the above example, the environment within function r can be
captured by using the system function lcsE (capture stack
environment).

lCSe 2 A Capture second function name on Sl
1 A The environment number is 1

)SlV 1 A Display the Sl for environment 1
F[2] v

Environment 1 now shares a part of i ts Sl (namely the function
F and ats local variable v) with the current environment displayed
earl ier. Any arbitrary expression can be evaluated in the en-
vironment of function F through the use of the extended
execute function. For example, the variable v within function r
may be assigned the value 3 as fol lows:

11 'V-3 '

Evaluating an expression in environment 1 (or any other envi-
ronment) is equivalent to evaluating the expression in calculator
mode with execution suspended in that environment. Execution
can be resumed within function r by evaluating an expression
that results in a branch. For examole:

1l '  +2'

The extended control functions in APL \3000 can be used for
purposes other than debugging. Since environments can be
captured (using !cse) and released (using !nse) under program
cont ro l ,  i t  i s  poss ib le  to  imp lement  such advanced pro-
grammlng concepts as backtracking, co-routines, and so on,
which have been dif f icult  or impossible to implement in APL
before.

References
1 . Y. LeBorgne, 'APL Usage in Europer Scope and Vatue, Proceedings of ApL 76,
Ottawa, Canada, September 1976, pp. 259,266.
2. D.G. Bobrow and B Wegbrelt, "A lvlodet and Stack tmplementalion of Multiple
Envronments ,  Communlca l ions  o f  the  ACM,  Vo i .  16 ,  No.  10 ,  October  1973,  po .
591,603
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CRT Terminal Provides both APL and
ASCII Operation
by Warren W. Leong

ODEL 264LA APL DISPLAY STATION (Fig. 1)
is a special CRT terminal designed to serve as

the principal user interface for APL \3000. APL opera-
tion plus extensive data communications capabil it ies
allow the terminal to be used with APL interpreters/
compilers that exist on a variety of computer systems,
especially the HP 3000. ASCII operation is provided
to retain compatibil i ty with HP 2640-Series CRT
Terminals.

The 26414 provides a superset of the functions
available with the 2645A Display Station. These in-
clude dual cartridge tape units, extended editing fea-
tures,  extended data communicat ions,  modular
firmware implementation, and eight user-defined
soft keys. A new, faster microprocessor provides the
control for the standard as well as the extended fea-
tures,

APL Features
Major features of the 2641A APL Display Station

are: display of the APL character set, display of the
APL overstrike character set*, display of APL under-
l ined characters, and non-destructive spaceover.
These features are accessible during the terminal's
APL mode.

The high-resolution display of zo+o Series Ter-
minalsl '2 provides a clear and easily readable ren-
dition of the standard APL characters as well as the
more intricate overstrike characters (Fig. 2). There are
two separate APL character sets: a 128-character APL
graphics set  and a 64-character  APL overst r ike

- Many APL primitive functions are called by striking one APL symbol, then backspacing and overstrik-
ing the first symbol with a second symbol. The combination lorms a new APL symbol. The APL

:;ff i l ,ft ""*nt 
ret makes it possible for the 2641A to display such combinations 0f basic APL

Fig. 1. Model 26414 APL Display
Statlon is designed to serve as the
principal user interface for
APL\3000 and other APL sys-
tems. lt has both APL and ASCII
mla lac  ^ f  Anara t i ^n
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Fig. 2. Standa rd 2641 A character sets are the 1 29-character
APL set, a 64-character APL overstrike set, and a 64-character
upper-case Roman set. An optional fourth character set may
be a mathematical symbol set, a ltne drawing set, a large
character set, or a user-deslgned set.

graphics set (Fig. 3J. Each set is programmed into
bipolar ROMs. The APL graphics set fol lows com-
monly accepted industry standard code assignments.
The APL overstrike graphics set is used internally by
the terminal to display the overstrike characters and
its code assignment is dependent on terminal re-
quirements. As each valid overstrike keystroke se-
quence is completed the proper overstrike character
is displayed on the screen. However, the actual over-
strike character sequence is transmitted to the com-
puter when in character mode or is stored in the
display memory for later transmission when in block
mode.

The 2640 Series Terminals can support up to four
independent character sets. Since the 2641,\ APL
Terminal includes as standard the APL set, the APL
overstrike set, and the ASCII set, it has room for one
additional character set. Currently this additional set
can be a mathematical symbol set, a l ine drawing set,

a large character set, or a set of the customer's own
design.

The keycaps have APL legends on their top faces
and ASCII legends, when they differ, on the front
faces (Fig. a). This allows unambiguous operation
whether  operat ing in  APL or  ASCII  mode.  The
keyboard code assignment is bit pairing*, rather than
typewriter pairing*, to retain compatibil i ty with the
26408 and zo+sA Terminals. The shift 0 fzero) posi-
tion is re-assigned to mean A in APL and - in ASCII;
this provides full APL compatibility for users when
switching between bit and typewriter pairing layouts.

Firmware
The controlling feature of the 2G41A APL Display

Station is the firmware, or microprograms stored in
ROM. All of the characteristics of the terminal are
defined by microprogramming the internal micro-
processor. These characteristics include switch selec-
tion or computer selection via escape sequence of the
two operating modes, APL or ASCII, overstrikes that
are recognized by the terminal, block transfers of APL
program and data statements, and editing features
during APL mode.

The first consideration was how to integrate the
APL operational requirements into the base product,
the 2645A. Since many of the features of APL were
distinctly different from normal operation, it made
sense to define an APL mode for APL operations. In
APL mode the APL character set is normally dis-
played instead of the ASCII character set. Any attempt
to overstrike an APL character results in the display of
a character from the overstrike set. Underlining of
APL characters is done by means of shift F. Block
transfers (via the ENTER key) take into account the
overstrike character set and decompose these into
APL characters separated by a backspace control
code.

APL systems recognize several overstrikes. With
-Bit pairing: shift codes difier from unshitt codes by one bit.
Typewriter pairing: codes follow an industry standard f0r certain typewriter terminals.

Fig. 3. Standard 2641A charac-
Ier sels.
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Fig. 4. 2641 A keys have APL legends on top and ASCII
legends, when they differ, on the front faces.

the 2641A, these overstrikes can be done at any time
or in any order. Overstriking poses several complica-
tions for a raster-scan CRT terminal that dynamically
allocates its memory and uses separate graphics sets
for the normal and overstrike characters. An APL user
may type several characters, then backspace to the
beginning of the l ine and overstrike the required
characters, or the user may complete each overstrike
before proceeding to the next character. Backspacing,
using the backspace key, does not delete characters
previously entered and forward spacing using the
space bar does not erase characters that are being
spaced over.

The basic algorithm for overstrikes directs the ter-
minal to monitor each byte that it writes to the dis-
play. In APL mode, the terminal checks the current
and new characters being typed in the same display
position and determines whether the new character
just overwrites the old (only when the old character is
a blank), whether the old character is replaced by a
new character from the overstrike set, or whether the
old character remains unchanged (the new character
is a blank). Overstrikes are allowed only in APL
character fields. If the cursor is in a non-APL field,
such as Roman, then the terminal performs ASCII
operations rather than APL operations, although the
operating mode is APL.

When the old and new characters form a valid over-
strike such as 

' 
and ., then the composite I is dis-

played. If an invalid pair is overstruck, then an ouT
character is displayed, providing a clear indication
that an error has been made.

The underline overstrike (shift F) for APL is nor-
mally restricted by APL systems to the alphabetic
characters and a few of the special characters. The
2641.A can underline anv APL character. The under-

line overstrikes are not a part of the character ROMs.
Instead, the underline feature of the terminal's dis-
play enhancement section is used to simulate the
underline overstrike.

The underlining process begins when an APL
character is displayed and the cursor is repositioned
to the character. When the underline character (shift
F) is typed, the firmware provides the proper en-
hancements to underline the character.

Data Transfer
All display information, overstrikes, and under-

lines can be stored on the cartridge tape units, printed
on a printer, or block transmitted to a computer sys-
tem.

Block transfers during APL mode, from the display
or the tape units, take into account the overstrike set
and underline enhancements. In the case of over-
strikes, the code from the overstrike ROM is used as
an index into a look-up table for the two components
of the overstrike. These two components are then
transmitted with a backspace separating them. The
underlined characters are transmitted with the proper
codes: the character, then backspace, then underline.
The our character is treated as a special case and
causes five characters to be output: 0 backspace U
backspace T.

Two types of printers are available for APL: bit
pairing or typewriter pairing. Distinguishing the two
are the code assignments of tg of the characters. The
2641A allows the user to select either translation
when directing APL data to a printer.

User-Defined Soft Keys
The 2641,4. has eight special-function user-defin-

able soft keys, fr through fa. These keys hold up to
80 ASCII characters that are specified by the user.
This specification may be done interactively, with the
old contents displayed while updates are done. The
specification may also be done by escape sequence
from a computer system or from the optional car-
tridge tape units.

After logging onto an HP/3000 Computer System
having an APL\3000 subsystem, the user specifies
the terminal type to be a 2641A by means of the
)TERM HP command, and the system downloads the
soft keys with the following commands:

Command: IRESUME ISI
Key: f7 f2

Command: ATTN )EDIT
Key: fs f6

)FNS )VARS
f3 f4

]LOAD )SAVE
f7 f8

Now the user can invoke frequently typed system
calls with a single keystroke. For instance, to edit a
function named ApL1. the user can Dress f6 to call the
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system editor, then type Rpr.r, followed by nurunN,,,
and be ready to edit. The user may also redefine theOe
sofl keys very simply. .i'

Key fs contains the arrN command, which is useful
duiing line editing. Suppose the user has typed a line
of data but notices a mistake. To corrept the error,
the user first backspaces the cursor to the incorrect
character:  , '

A B C E E
Using the 2641A and APL\3000, the user then hits,
ATTN, which causes the APL terminal driver to send
an escape sequence to clear the rest of the line:

A B C _

The user continues typing from this point to complete
the data statement:

A B C D E  -
The traditional method of editing is to position the
cursor under the incorrect character, then send a line-
feed to the computer and type the correct characters,
producing a display like:

A B C F E

D E

Note that the display can be confusing to read if
several.corrections have to be made in this manner.
However, both methods of correction are allowed bv
the subsystem and the 2641A.

Extended Features
Editing features have been expanded to include

character wraparound when the terminal is doing
character delete or insert operations. Left and right
margins may also be set. Extended I/O operations
with the cartridge tape option include write, back-
space, read, data comparisons, and data logging.

The data communications facility allows data rates
up to 9600 baud, and multipoint capabilities that
allow up to 32 terminals to share a single communi-

.  

\ " r J ,  

j

cgtions line. Self-test has been expanded to allow
testing of the optional cartridge tripes and associated
electronics as well as the multipoint communica-
tions option, cabling, and terminating instrumenta-
tion. Multipoint communications can even be tested
up to the remote modem from the terminal keyboard.
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